Biology
DNA vs. RNA – A Comparison Chart
Comparison
|
DNA
|
RNA
|
Full Name | Deoxyribonucleic Acid | Ribonucleic Acid |
Function | DNA replicates and stores genetic information. It is a blueprint for all genetic information contained within an organism | RNA converts the genetic information contained within DNA to a format used to build proteins, and then moves it to ribosomal protein factories. |
Structure | DNA consists of two strands, arranged in a double helix. These strands are made up of subunits called nucleotides. Each nucleotide contains a phosphate, a 5-carbon sugar molecule and a nitrogenous base. | RNA only has one strand, but like DNA, is made up of nucleotides. RNA strands are shorter than DNA strands. RNA sometimes forms a secondary double helix structure, but only intermittently. |
Length | DNA is a much longer polymer than RNA. A chromosome, for example, is a single, long DNA molecule, which would be several centimetres in length when unravelled. | RNA molecules are variable in length, but much shorter than long DNA polymers. A large RNA molecule might only be a few thousand base pairs long. |
Sugar | The sugar in DNA is deoxyribose, which contains one less hydroxyl group than RNA’s ribose. | RNA contains ribose sugar molecules, without the hydroxyl modifications of deoxyribose. |
Bases | The bases in DNA are Adenine (‘A’), Thymine (‘T’), Guanine (‘G’) and Cytosine (‘C’). | RNA shares Adenine (‘A’), Guanine (‘G’) and Cytosine (‘C’) with DNA, but contains Uracil (‘U’) rather than Thymine. |
Base Pairs | Adenine and Thymine pair (A-T)Cytosine and Guanine pair (C-G) | Adenine and Uracil pair (A-U)Cytosine and Guanine pair (C-G) |
Location | DNA is found in the nucleus, with a small amount of DNA also present in mitochondria. | RNA forms in the nucleolus, and then moves to specialised regions of the cytoplasm depending on the type of RNA formed. |
Reactivity | Due to its deoxyribose sugar, which contains one less oxygen-containing hydroxyl group, DNA is a more stable molecule than RNA, which is useful for a molecule which has the task of keeping genetic information safe. | RNA, containing a ribose sugar, is more reactive than DNA and is not stable in alkaline conditions. RNA’s larger helical grooves mean it is more easily subject to attack by enzymes. |
Ultraviolet (UV) Sensitivity | DNA is vulnerable to damage by ultraviolet light. | RNA is more resistant to damage from UV light than DNA. |
What are the key differences between DNA and RNA?
Function
DNA encodes all genetic information, and is the blueprint from which all biological life is created. And that’s only in the short-term. In the long-term, DNA is a storage device, a biological flash drive that allows the blueprint of life to be passed between generations2. RNA functions as the reader that decodes this flash drive. This reading process is multi-step and there are specialized RNAs for each of these steps. Below, we look in more detail at the three most important types of RNA.
What are the three types of RNA?
- Messenger RNA (mRNA) copies portions of genetic code, a process called transcription, and transports these copies to ribosomes, which are the cellular factories that facilitate the production of proteins from this code.
- Transfer RNA (tRNA) is responsible for bringing amino acids, basic protein building blocks, to these protein factories, in response to the coded instructions introduced by the mRNA. This protein-building process is called translation.
- Finally, Ribosomal RNA (rRNA) is a component of the ribosome factory itself without which protein production would not occur3.
Sugar
Both DNA and RNA are built with a sugar backbone, but whereas the sugar in DNA is called deoxyribose (left in image), the sugar in RNA is called simply ribose (right in image). The ‘deoxy’ prefix denotes that, whilst RNA has two hydroxyl (-OH) groups attached to its carbon backbone, DNA has only one, and has a lone hydrogen atom attached instead. RNA’s extra hydroxyl group proves useful in the process of converting genetic code into mRNAs that can be made into proteins, whilst the deoxyribose sugar gives DNA more stability4.
The Chemical Structures of Deoxyribose (left) and Ribose (right) Sugars
Bases
The nitrogen bases in DNA are the basic units of genetic code, and their correct ordering and pairing is essential to biological function. The four bases that make up this code are adenine (A), thymine (T), guanine (G) and cytosine (C). Bases pair off together in a double helix structure, these pairs being A and T, and C and G. RNA doesn’t contain thymine bases, replacing them with uracil bases (U), which pair to adenine1.
Structure
Whilst the ubiquity of Francis Crick and James Watson’s (or should that be Rosalind Franklin’s?) DNA double helix means that the two-stranded structure of DNA structure is common knowledge, RNA’s single stranded format is not as well known. RNA can form into double-stranded structures, such as during translation, when mRNA and tRNA molecules pair. DNA polymers are also much longer than RNA polymers; the 2.3m long human genome consists of 46 chromosomes, each of which is a single, long DNA molecule. RNA molecules, by comparison, are much shorter4.
Location
Eukaryotic cells, including all animal and plant cells, house the great majority of their DNA in the nucleus, where it exists in a tightly compressed form, called a chromosome5. This squeezed format means the DNA can be easily stored and transferred. In addition to nuclear DNA, some DNA is present in energy-producing mitochondria, small organelles found free-floating in the cytoplasm, the area of the cell outside the nucleus.
The three types of RNA are found in different locations. mRNA is made in the nucleus, with each mRNA fragment copied from its relative piece of DNA, before leaving the nucleus and entering the cytoplasm. The fragments are then shuttled around the cell as needed, moved along by the cell’s internal transport system, the cytoskeleton. tRNA, like mRNA, is a free-roaming molecule that moves around the cytoplasm. If it receives the correct signal from the ribosome, it will then hunt down amino acid subunits in the cytoplasm and bring them to the ribosome to be built into proteins5. rRNA, as previously mentioned, is found as part of ribosomes. Ribosomes are formed in an area of the nucleus called the nucleolus, before being exported to the cytoplasm, where some ribosomes float freely. Other cytoplasmic ribosomes are bound to the endoplasmic reticulum, a membranous structure that helps process proteins and export them from the cell6.
References
https://www.technologynetworks.com/genomics/lists/what-are-the-key-differences-between-dna-and-rna-296719
TYPES OF GALAXIES
The most widely used classification scheme for galaxies is based on one devised by Edwin P. Hubble and further refined by astronomer Gerard de Vaucouleurs. It uses the three main types, and then further breaks them down by specific characteristics (openness of spirals, size and extent of bars, size of galactic bulges). In this age of multi-wavelength observing, the sub-classifications also include markers for such characteristics as a galaxy’s star-formation rate and age spectrum of its stars.
Spiral Galaxies
Spiral galaxies are the most common type in the universe. Our Milky Way is a spiral, as is the rather close-by Andromeda Galaxy. Spirals are large rotating disks of stars and nebulae, surrounded by a shell of dark matter. The central bright region at the core of a galaxy is called the “galactic bulge”. Many spirals have a halo of stars and star clusters arrayed above and below the disk.
Spirals that have large, bright bars of stars and material cutting across their central sections are called “barred spirals”. A large majority of galaxies have these bars, and astronomers study them to understand what function they play within the galaxy. In addition to bars, many spirals may also contain supermassive black holes in their cores. Subgroups of spirals are defined by the characteristics of their bulges, spiral arms, and how tightly wound those arms are.
Elliptical Galaxies
Elliptical galaxies are roughly egg-shaped (ellipsoidal or ovoid) found largely in galaxy clusters and smaller compact groups. Most ellipticals contain older, low-mass stars, and because they lack a great deal of star-making gas and dust clouds, there is little new star formation occurring in them. Ellipticals can have as few as a hundred million to perhaps a hundred trillion stars, and they can range in size from a few thousand light-years across to more than a few hundred thousand. Astronomers now suspect that every elliptical has a central supermassive black hole that is related to the mass of the galaxy itself. Messier 87 is an example of an elliptical galaxy. There are some subgroups of ellipticals, including “dwarf ellipticals” with properties that put them somewhere between regular ellipticals and the tightly knit groups of stars called globular clusters.
Irregular Galaxies
Irregular galaxies are as their name suggests: irregular in shape. The best example of an irregular that can be seen from Earth is the Small Magellanic Cloud. Irregulars usually do not have enough structure to characterise them as spirals or ellipticals. They may show some bar structure, they may have active regions of star formation, and some smaller ones are listed as “dwarf irregulars”, very similar to the very earliest galaxies that formed about 13.5 billion years ago. Irregulars are characterised by their structures (or lack of them).
No comments:
Post a Comment