Monday, February 24, 2020

Week of February 24, 2020 Algebra 1

Systems of Linear Equations


    linear
    Linear Equation is an equation for a line.
    A linear equation is not always in the form y = 3.5 − 0.5x,
    It can also be like y = 0.5(7 − x)
    Or like y + 0.5x = 3.5
    Or like y + 0.5x − 3.5 = 0 and more.
    (Note: those are all the same linear equation!)

    System of Linear Equations is when we have two or more linear equations working together.

Example: Here are two linear equations:

    2x+y=5
    −x+y=2
    Together they are a system of linear equations.
    Can you discover the values of x and y yourself? (Just have a go, play with them a bit.)
    Let's try to build and solve a real world example:

Example: You versus Horse

    horse
    It's a race!
    You can run 0.2 km every minute.
    The Horse can run 0.5 km every minute. But it takes 6 minutes to saddle the horse.
    How far can you get before the horse catches you?

    We can make two equations (d=distance in km, t=time in minutes)
    • You run at 0.2km every minute, so d = 0.2t
    • The horse runs at 0.5 km per minute, but we take 6 off its time: d = 0.5(t−6)

    So we have a system of equations (that are linear):
    • d = 0.2t
    • d = 0.5(t−6)
    We can solve it on a graph:
    you vs horse graph
    Do you see how the horse starts at 6 minutes, but then runs faster?
    It seems you get caught after 10 minutes ... you only got 2 km away.
    Run faster next time.
    So now you know what a System of Linear Equations is.
    Let us continue to find out more about them ....

Solving

    There can be many ways to solve linear equations!
    Let us see another example:

Example: Solve these two equations:

    system linear equations graph
    • x + y = 6
    • −3x + y = 2
    The two equations are shown on this graph:
    Our task is to find where the two lines cross.
    Well, we can see where they cross, so it is already solved graphically.
    But now let's solve it using Algebra!

    Hmmm ... how to solve this? There can be many ways! In this case both equations have "y" so let's try subtracting the whole second equation from the first:
    x + y − (−3x + y) = 6 − 2
    Now let us simplify it:
    x + y + 3x − y = 6 − 2
    4x = 4
    x = 1
    So now we know the lines cross at x=1.
    And we can find the matching value of y using either of the two original equations (because we know they have the same value at x=1). Let's use the first one (you can try the second one yourself):
    x + y = 6
    1 + y = 6
    y = 5
    And the solution is:
    x = 1 and y = 5
    And the graph shows us we are right!

Linear Equations

    Only simple variables are allowed in linear equations. No x2, y3, √x, etc:
    linear vs nonlinear
    Linear vs non-linear

Dimensions

    Linear Equation can be in 2 dimensions ...
    (such as x and y)
     2D Line
    ... or in 3 dimensions ...
    (it makes a plane)
     3D Plane
    ... or 4 dimensions ...  
    ... or more!  

Common Variables

    For the equations to "work together" they share one or more variables:
    A System of Equations has two or more equations in one or more variables

Many Variables

    So a System of Equations could have many equations and many variables.

Example: 3 equations in 3 variables

    2x+y2z=3
    xyz=0
    x+y+3z=12
    There can be any combination:
    • 2 equations in 3 variables,
    • 6 equations in 4 variables,
    • 9,000 equations in 567 variables,
    • etc.

Solutions

    When the number of equations is the same as the number of variables there is likely to be a solution. Not guaranteed, but likely.
    In fact there are only three possible cases:
    • No solution
    • One solution
    • Infinitely many solutions
    When there is no solution the equations are called "inconsistent".
    One or infinitely many solutions are called "consistent"
    Here is a diagram for 2 equations in 2 variables:
    system of linear equations types: no solution, one solution, infinite solutions

Independent

    "Independent" means that each equation gives new information.
    Otherwise they are "Dependent".
    Also called "Linear Independence" and "Linear Dependence"

Example:

    • x + y = 3
    • 2x + 2y = 6
    Those equations are "Dependent", because they are really the same equation, just multiplied by 2.
    So the second equation gave no new information.

Where the Equations are True

    The trick is to find where all equations are true at the same time.
    True? What does that mean?

Example: You versus Horse

    you vs horse graph
    The "you" line is true all along its length (but nowhere else).
    Anywhere on that line d is equal to 0.2t
    • at t=5 and d=1, the equation is true (Is d = 0.2t? Yes, as 1 = 0.2×5 is true)
    • at t=5 and d=3, the equation is not true (Is d = 0.2t? No, as 3 = 0.2×5 is not true)
    Likewise the "horse" line is also true all along its length (but nowhere else).
    But only at the point where they cross (at t=10, d=2) are they both true.
    So they have to be true simultaneously ...
    ... that is why some people call them "Simultaneous Linear Equations"

Solve Using Algebra

    It is common to use Algebra to solve them.
    Here is the "Horse" example solved using Algebra:

Example: You versus Horse

    The system of equations is:
    • d = 0.2t
    • d = 0.5(t−6)
    In this case it seems easiest to set them equal to each other:
    d = 0.2t = 0.5(t−6)

    Start with:0.2t = 0.5(t − 6)
    Expand 0.5(t−6):0.2t = 0.5t − 3
    Subtract 0.5t from both sides:−0.3t = −3
    Divide both sides by −0.3:t = −3/−0.3 = 10 minutes
    Now we know when you get caught!
    Knowing t we can calculate d:d = 0.2t = 0.2×10 = 2 km

    And our solution is:
    t = 10 minutes and d = 2 km

Algebra vs Graphs

    Why use Algebra when graphs are so easy? Because:
    More than 2 variables can't be solved by a simple graph.
    So Algebra comes to the rescue with two popular methods:
    • Solving By Substitution
    • Solving By Elimination
    We will see each one, with examples in 2 variables, and in 3 variables. Here goes ...

Solving By Substitution

    These are the steps:
    • Write one of the equations so it is in the style "variable = ..."
    • Replace (i.e. substitute) that variable in the other equation(s).
    • Solve the other equation(s)
    • (Repeat as necessary)
    Here is an example with 2 equations in 2 variables:

Example:

    • 3x + 2y = 19
    • x + y = 8
    We can start with any equation and any variable.
    Let's use the second equation and the variable "y" (it looks the simplest equation).

    Write one of the equations so it is in the style "variable = ...":
    We can subtract x from both sides of x + y = 8 to get y = 8 − x. Now our equations look like this:
    • 3x + 2y = 19
    • y = 8 − x

    Now replace "y" with "8 − x" in the other equation:
    • 3x + 2(8 − x) = 19
    • y = 8 − x

    Solve using the usual algebra methods:
    Expand 2(8−x):
    • 3x + 16 − 2x = 19
    • y = 8 − x
    Then 3x−2x = x:
    • x + 16 = 19
    • y = 8 − x
    And lastly 19−16=3
    • x = 3
    • y = 8 − x

    Now we know what x is, we can put it in the y = 8 − x equation:
    • x = 3
    • y = 8 − 3 = 5
    And the answer is:
    x = 3
    y = 5

    Note: because there is a solution the equations are "consistent"

    Check: why don't you check to see if x = 3 and y = 5 works in both equations?

Solving By Substitution: 3 equations in 3 variables

    OK! Let's move to a longer example: 3 equations in 3 variables.
    This is not hard to do... it just takes a long time!

Example:

    • x + z = 6
    • z − 3y = 7
    • 2x + y + 3z = 15
    We should line up the variables neatly, or we may lose track of what we are doing:

    x  +z=6   
     3y+z=7   
    2x+y+3z=15   

    WeI can start with any equation and any variable. Let's use the first equation and the variable "x".

    Write one of the equations so it is in the style "variable = ...":
    x    =6 − z  
     3y+z=7   
    2x+y+3z=15   

    Now replace "x" with "6 − z" in the other equations:
    (Luckily there is only one other equation with x in it)
     x    =6 − z  
      3y+z=7   
    2(6−z)+y+3z=15   

    Solve using the usual algebra methods:
    2(6−z) + y + 3z = 15 simplifies to y + z = 3:
    x    =6 − z  
     3y+z=7   
      y+z=3   
    Good. We have made some progress, but not there yet.

    Now repeat the process, but just for the last 2 equations.

    Write one of the equations so it is in the style "variable = ...":
    Let's choose the last equation and the variable z:
    x    =6 − z  
     3y+z=7   
        z=3 − y  

    Now replace "z" with "3 − y" in the other equation:
    x    =6 − z  
     3y+3 − y=7   
        z=3 − y  

    Solve using the usual algebra methods:
    −3y + (3−y) = 7 simplifies to −4y = 4, or in other words y = −1
    x    =6 − z  
      y  =−1   
        z=3 − y  
    Almost Done!

    Knowing that y = −1 we can calculate that z = 3−y = 4:
    x    =6 − z  
      y  =−1   
        z=4   
    And knowing that z = 4 we can calculate that x = 6−z = 2:
    x    =2   
      y  =−1   
        z=4   

    And the answer is:
    x = 2
    y = −1
    z = 4

    Check: please check this yourself.
    We can use this method for 4 or more equations and variables... just do the same steps again and again until it is solved.
    Conclusion: Substitution works nicely, but does take a long time to do.

Solving By Elimination

    Elimination can be faster ... but needs to be kept neat.
    "Eliminate" means to remove: this method works by removing variables until there is just one left.
    The idea is that we can safely:
    • multiply an equation by a constant (except zero),
    • add (or subtract) an equation on to another equation
    Like in these examples:
    elimination methods

WHY can we add equations to each other?

    Imagine two really simple equations:
    x − 5 = 3
    5 = 5
    We can add the "5 = 5" to "x − 5 = 3":
    x − 5 + 5 = 3 + 5
    x = 8
    Try that yourself but use 5 = 3+2 as the 2nd equation
    It will still work just fine, because both sides are equal (that is what the = is for!)

    We can also swap equations around, so the 1st could become the 2nd, etc, if that helps.

    OK, time for a full example. Let's use the 2 equations in 2 variables example from before:

Example:

    • 3x + 2y = 19
    • x + y = 8
    Very important to keep things neat:
    3x+2y=19   
    x+y=8   

    Now ... our aim is to eliminate a variable from an equation.
    First we see there is a "2y" and a "y", so let's work on that.
    Multiply the second equation by 2:
    3x+2y=19   
    2x+2y=16   
    Subtract the second equation from the first equation:
    x  =3   
    2x+2y=16   
    Yay! Now we know what x is!

    Next we see the 2nd equation has "2x", so let's halve it, and then subtract "x":
    Multiply the second equation by ½ (i.e. divide by 2):
    x  =3   
    x+y=8   
    Subtract the first equation from the second equation:
    x  =3   
      y=5   
    Done!
    And the answer is:
    x = 3 and y = 5

    And here is the graph:
    Graph of (19-3x)/2 vs 8-x
    The blue line is where 3x + 2y = 19 is true
    The red line is where x + y = 8 is true
    At x=3, y=5 (where the lines cross) they are both true. That is the answer.
    Here is another example:

Example:

    • 2x − y = 4
    • 6x − 3y = 3
    Lay it out neatly:
    2xy=4   
    6x3y=3   
    Multiply the first equation by 3:
    6x3y=12   
    6x3y=3   
    Subtract the second equation from the first equation:
    00=9   
    6x3y=3   
    0 − 0 = 9 ???
    What is going on here?

    Quite simply, there is no solution.

    They are actually parallel lines: graph of two parallel lines
    And lastly:

Example:

    • 2x − y = 4
    • 6x − 3y = 12
    Neatly:
    2xy=4   
    6x3y=12   
    Multiply the first equation by 3:
    6x3y=12   
    6x3y=12   
    Subtract the second equation from the first equation:
    00=0   
    6x3y=3   
    0 − 0 = 0
    Well, that is actually TRUE! Zero does equal zero ...

    ... that is because they are really the same equation ...

    ... so there are an Infinite Number of Solutions
    They are the same line: graph of two lines superimposed
    And so now we have seen an example of each of the three possible cases:
    • No solution
    • One solution
    • Infinitely many solutions

Solving By Elimination: 3 equations in 3 variables

    Before we start on the next example, let's look at an improved way to do things.
    Follow this method and we are less likely to make a mistake.
    First of all, eliminate the variables in order:
    • Eliminate xs first (from equation 2 and 3, in order)
    • then eliminate y (from equation 3)
    So this is how we eliminate them:
    elimination methods
    We then have this "triangle shape":
    elimination methods
    Now start at the bottom and work back up (called "Back-Substitution")
    (put in z to find y, then and y to find x):
    elimination methods
    And we are solved:
    elimination methods
    ALSO, we will find it is easier to do some of the calculations in our head, or on scratch paper, rather than always working within the set of equations:

Example:

    • x + y + z = 6
    • 2y + 5z = −4
    • 2x + 5y − z = 27
    Written neatly:
    x+y+z=6   
      2y+5z=−4   
    2x+5yz=27   

    First, eliminate x from 2nd and 3rd equation.
    There is no x in the 2nd equation ... move on to the 3rd equation:
    Subtract 2 times the 1st equation from the 3rd equation (just do this in your head or on scratch paper):
    elimination methods
    And we get:
    x+y+z=6   
      2y+5z=−4   
      3y3z=15   

    Next, eliminate y from 3rd equation.
    We could subtract 1½ times the 2nd equation from the 3rd equation (because 1½ times 2 is 3) ...
    ... but we can avoid fractions if we:
    • multiply the 3rd equation by 2 and
    • multiply the 2nd equation by 3
    and then do the subtraction ... like this:
    elimination methods
    And we end up with:
    x+y+z=6   
      2y+5z=−4   
        z=−2   
    We now have that "triangle shape"!

    Now go back up again "back-substituting":
    We know z, so 2y+5z=−4 becomes 2y−10=−4, then 2y=6, so y=3:
    x+y+z=6   
      y  =3   
        z=−2   
    Then x+y+z=6 becomes x+3−2=6, so x=6−3+2=5
    x    =5   
      y  =3   
        z=−2   

    And the answer is:
    x = 5
    y = 3
    z = −2

    Check: please check for yourself.

General Advice

    Once you get used to the Elimination Method it becomes easier than Substitution, because you just follow the steps and the answers appear.
    But sometimes Substitution can give a quicker result.
    • Substitution is often easier for small cases (like 2 equations, or sometimes 3 equations)
    • Elimination is easier for larger cases
    And it always pays to look over the equations first, to see if there is an easy shortcut ... so experience helps.

    Week of February 24, 2020 College Readiness Math

    Slope (Gradient) of a Straight Line

    The Slope (also called Gradient) of a straight line shows how steep a straight line is.

    Calculate

    To calculate the Slope:
    Divide the change in height by the change in horizontal distance
    Slope = Change in YChange in X gradient
    Have a play (drag the points):
    slope = 36 = 0.5
    © 2018 MathsIsFun.com v0.891

    Examples:

    gradient 3/3 The Slope of this line = 33 = 1
    So the Slope is equal to 1

    graph The Slope of this line = 42 = 2
    The line is steeper, and so the Slope is larger.

    gradient 3/5 The Slope of this line = 35 = 0.6
    The line is less steep, and so the Slope is smaller.

    Positive or Negative?

    Going from left-to-right, the cyclist has to Push on a Positive Slope:
    negative slope   zero slope   positive slope
    When measuring the line:
    • Starting from the left and going across to the right is positive
      (but going across to the left is negative).
    • Up is positive, and down is negative

    gradient -4/2 Slope = −42 = −2
    That line goes down as you move along, so it has a negative Slope.

    Straight Across

    gradient 0/5 Slope = 05 = 0
    A line that goes straight across (Horizontal) has a Slope of zero.

    Straight Up and Down

    gradient 3/0 Slope = 30 = undefined
    That last one is a bit tricky ... you can't divide by zero,
    so a "straight up and down" (vertical) line's Slope is "undefined".

    Rise and Run

    Sometimes the horizontal change is called "run", and the vertical change is called "rise" or "fall":
    rise and run
    They are just different words, none of the calculations change.