Finding inverse functions
Inverse functions, in the most general sense, are functions that "reverse" each other. For example, if f takes a to b, then the inverse, f, start superscript, minus, 1, end superscript, must take b to a.
Or in other words, f, left parenthesis, a, right parenthesis, equals, b, \Longleftrightarrow, f, start superscript, minus, 1, end superscript, left parenthesis, b, right parenthesis, equals, a.
In this article we will learn how to find the formula of the inverse function when we have the formula of the original function.
Before we start...
In this lesson, we will find the inverse function of f, left parenthesis, x, right parenthesis, equals, 3, x, plus, 2.
Before we do that, let's first think about how we would find f, start superscript, minus, 1, end superscript, left parenthesis, 8, right parenthesis.
To find f, start superscript, minus, 1, end superscript, left parenthesis, 8, right parenthesis, we need to find the input of f that corresponds to an output of 8. This is because if f, start superscript, minus, 1, end superscript, left parenthesis, 8, right parenthesis, equals, x, then by definition of inverses, f, left parenthesis, x, right parenthesis, equals, 8.
So f, left parenthesis, 2, right parenthesis, equals, 8 which means that f, start superscript, minus, 1, end superscript, left parenthesis, 8, right parenthesis, equals, 2
Finding inverse functions
We can generalize what we did above to find f, start superscript, minus, 1, end superscript, left parenthesis, y, right parenthesis for any y.
To find f, start superscript, minus, 1, end superscript, left parenthesis, y, right parenthesis, we can find the input of f that corresponds to an output of y. This is because if f, start superscript, minus, 1, end superscript, left parenthesis, y, right parenthesis, equals, x then by definition of inverses, f, left parenthesis, x, right parenthesis, equals, y.
So f, start superscript, minus, 1, end superscript, left parenthesis, y, right parenthesis, equals, start fraction, y, minus, 2, divided by, 3, end fraction.
Since the choice of the variable is arbitrary, we can write this as f, start superscript, minus, 1, end superscript, left parenthesis, x, right parenthesis, equals, start fraction, x, minus, 2, divided by, 3, end fraction.
No comments:
Post a Comment